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Abstract—We propose a novel framework to automatically learn to aggregate and transform photometric measurements from multiple

unstructured views into spatially distinctive and view-invariant low-level features, which are subsequently fed to a multi-view stereo

pipeline to enhance 3D reconstruction. The illumination conditions during acquisition and the feature transform are jointly trained on a

large amount of synthetic data. We further build a system to reconstruct both the geometry and anisotropic reflectance of a variety of

challenging objects from hand-held scans. The effectiveness of the system is demonstrated with a lightweight prototype, consisting of a

camera and an array of LEDs, as well as an off-the-shelf tablet. Our results are validated against reconstructions from a professional

3D scanner and photographs, and compare favorably with state-of-the-art techniques.

Index Terms—photometric stereo, illumination multiplexing, feature learning, neural acquisition
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1 INTRODUCTION

F REE-FORM scanning of 3D geometry in the presence
of complex appearance is an important problem in

computer graphics and computer vision. It is useful for
various applications including e-commerce, visual effects,
3D printing, and cultural heritage.

Despite extensive research on traditional shape recon-
struction over the past decades, this problem remains chal-
lenging. At one hand, multi-view stereo [1] usually assumes
a Lambertian-dominant reflectance in computing reliable
view-invariant features. Complex appearance variation with
view or lighting is not welcome. It may alter the native
spatial features on object surface, or specularly reflect the
projected pattern from active illumination, either of which
may result in correspondence matching errors. On the other
hand, photometric stereo [2], [3] takes as input the images
under varying illumination at the same view(s), with the
help from additional hardware (i.e., a tripod) for fixing
the view. In free-form scanning, however, such images are
impractical to acquire, as the camera/view is constantly
changing.

Recently, image-driven differentiable optimization
makes a significant success in geometric reconstruction
[4], [5], [6]. The geometry and appearance are optimized
jointly, with a loss function that encourages the rendering
results to approximate corresponding input images in an
end-to-end fashion. But for complex appearance such as
highly specular or strongly anisotropic reflectance, the
result quality is not yet satisfactory, due to the insufficient
physical sampling capability (e.g., a flash only produces a
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Fig. 1: Using an illumination-multiplexing device, such as
a lightweight prototype consisting of a single camera and
a programmable light array (a) or an off-the-shelf tablet
(b), we propose a system that learns to acquire with pre-
optimized time-varying lighting patterns (the bottom insets
in (a) and (b)) at unstructured views, and reconstruct both
the geometry (c) and complex anisotropic reflectance (d)
of a number of challenging objects. Please refer to the
supplementary video for animated rendering results.

single point sample in the illumination domain at a time [7])
and the insufficient fidelity of appearance representation.

To tackle the above difficulties, we present a novel
framework to automatically learn to aggregate and trans-
form photometric measurements from multiple unstructured
views into spatially distinctive and view-invariant fea-
tures (Fig. 2). This low-level transform is modular, and can
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Fig. 2: Visualization of our feature maps at 2 views (3rd/4th
column) on a scanned object (top row) and a synthetic one
(bottom row). The 1st/2nd column are input photographs
at the same view as the 3rd/4th column, respectively. Our
high-dimensional features are projected to 3D via PCA for
visualization.

enhance any multi-view stereo pipeline as a preprocessing
step. To encode more angular information for high-quality
reconstruction, we employ pre-optimized time-varying illu-
mination multiplexing to physically convolve with a BRDF
slice to produce a photometric measurement. To handle
varying views, we carefully warp related measurements to
preserve their geometric relationships for efficient neural
processing. The illumination conditions during acquisition
and the feature transform are jointly trained on a large
amount of synthetic data. Our data-driven framework is
highly flexible and can adapt to various factors, including
the physical capabilities/characteristics of different setups,
and different types of appearance. Since our photometric
measurements reveal useful information about appearance
as well, we further build a system to scan and reconstruct
both the geometry and reflectance for complete object digi-
tization.

The effectiveness of our system is demonstrated on scan-
ning a number of challenging objects with a wide variation
of shape and reflectance (Fig. 1). Our framework is not tied
to any particular setup (e.g., a lightstage [8]). We conduct
the experiments on a lightweight illumination-multiplexing
prototype [9], consisting of a camera and an LED array, as
well as an off-the-shelf tablet using its front camera and its
screen as a programmable light source. Our shape results
are validated against reconstructions from a professional 3D
scanner, and our appearance results against photographs.
We compare favorably with state-of-the-art techniques both
in terms of geometry and reflectance.

2 RELATED WORK

Due to the space limit, below we only review previous work
that is closely related to our approach.

2.1 Photometric Stereo

These techniques compute a normal field from appearance
variations under different lighting and typically at a fixed
view, and then integrate into a depth map [3], [10]. Research
efforts have been made from the original assumption of a

Lambertian reflectance and a calibrated light, to more gen-
eral appearance [11], [12], [13] and/or uncalibrated lighting
conditions [14], [15], [16]. Due to indirect measurements,
the integrated depth map often suffers from low-frequency
distortions. Multi-view photometric stereo leverages photo-
metric cues at multiple views to obtain a complete 3D shape.
These methods refine an initial coarse geometry with the
estimated normals [17], [18], [19]. Vlasic et al. [20] directly
combine multi-view depth maps, each of which is computed
from a normal field, to produce the final result. Logothetis
et al. [21] exploit the relationship between a signed distance
field and normals for reconstruction. Bi et al. [22] build a
rig of 6 colocated cameras and lights, and estimate normals
from sparse multi-view photometric images to refine an
initial geometry. Yang et al. [23] jointly estimate geometry,
materials and lighting with differentiable rendering. The
closest work to ours is EPFT [24]. They learn to probe the
angular information with a set of lighting patterns from a
fixed view at a time, and transform the measurements to
useful multi-view feature maps for 3D reconstruction.

All above work requires taking multiple photographs at
a fixed view; none can be applied to free-form scan, in which
the camera is constantly moving relative to the physical
sample. In comparison, we propose a data structure and
network to efficiently aggregate and transform photometric
measurements at unstructured views, which are unique in
free-form scanning, to low-level geometric features.

2.2 Multi-view Stereo

Traditional methods extract low-level features from each
image, compute feature correspondences across multiple
views, and apply triangulation to obtain 3D information [1].
Spatial aggregation is typically required, as the raw mea-
surements at each pixel are not distinctive enough to es-
tablish reliable correspondences. While excellent results are
achieved on Lambertian-dominant appearance [25], [26], the
reconstruction quality cannot be guaranteed in the presence
of complex materials that vary with view or lighting [27],
[28]. Recently, hand-crafted features are replaced with au-
tomatically learned ones [29], [30], [31]. However, learning
high-quality features in the presence of complex materials
remains difficult, due to the lack of corresponding training
datasets.

With the advances in machine learning, considerable
progress has been made in developing end-to-end frame-
works which take as input photographs and directly predict
depth maps. Yao et al. [32] encode camera geometries in
the network as differentiable homography, and construct 3D
cost volumes to regress per-view depth map. Gu et al. [33]
introduce cascade cost volume to predict per-view depth
map in a coarse-to-fine manner. These approaches do not
exploit physical appearance information for 3D reconstruc-
tion.

Our work is orthogonal to most techniques here, which
focus on efficient processing in the spatial domain. In com-
parison, we learn how to aggregate useful information in the
high-dimensional view-illumination domain for enhanced
geometric reconstruction. The optimized lighting patterns
essentially serve as convolution kernels to actively probe
the angular domain. Unlike the majority of related work,
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which tries to exclude photometric information, we exploit
such information to efficiently handle highly challenging
anisotropic appearance. Moreover, our learned low-level
feature transform can be plugged in any existing multi-view
stereo pipeline as a preprocessing module.

2.3 Image-driven Differentiable Optimization

Recent research optimizes both shape and appearance, using
captured images as a form of self-supervision [4], [6], [34],
[35], [36]. Various neural geometric representations are pro-
posed, along with a shading network to account for appear-
ance variations [4], [6], [35], [36]. While the network con-
siderably improves the reconstruction robustness compared
with the Lambertian model, it cannot model challenging
appearance like anisotropic materials with high fidelity.

A number of techniques [22], [37], [38], [39] focus on
recovering detailed geometry and materials using a point
light colocated with the camera. These methods struggle
with strong specular highlights or anisotropic reflections,
due to the extremely low sampling efficiency in the an-
gular domain. Another line of work optimizes geometry
and appearance under environment lighting [7], [34], [40],
[41], [42], [43]. Fundamentally, the material reconstruction of
passive photometric approaches is limited by the frequency
distribution of the environment illumination [44]. As a re-
sult, the quality of jointly optimized geometry is affected.

Our approach is different mainly from 3 aspects. First,
we jointly optimize the illumination condition during ac-
quisition to pack more useful information in the measure-
ments for improved reconstruction. The light array we use
also has a substantially higher physical sampling capability
compared with a flash. Second, we leverage the existing
domain knowledge on appearance (i.e., the GGX BRDF
model) in training our network, while such knowledge is
entirely learned from measurements on a per-object basis
in the majority of related work. Finally, we do not jointly
optimize the shape and appearance. This decoupling pre-
vents appearance reconstruction errors from propagating to
geometry results [5].

3 ACQUISITION SETUP

We conduct acquisition experiments on two illumination-
multiplexing devices, a lightweight custom-built scanner
similar to [9] (Fig. 1-a) and an off-the-shelf tablet (Fig. 1-
b). The intrinsic/extrinsic parameters of the camera, as well
as the positions, orientations, angular intensity and spectral
distribution of the light sources, are carefully calibrated.
We acquire 30/10 images per second on the scanner/tablet
during scanning, respectively.

Prototype Scanner. Our prototype consists of a rectan-
gular RGB LED array and a single machine vision camera.
The LED array has 32×16=512 RGB LEDs, with a pitch of
1cm and a maximum total power of 40W. The intensity of
each LED is independently controlled, and quantized with
8 bits per channel for implementation via Power Width
Modulation (PWM). A 5MP Basler acA2440-75uc camera is
mounted on the top edge of the LED array. A house-made
circuit board is in charge of high-precision synchronization
between the camera and the LED array.
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Fig. 3: Our runtime pipeline. First, we partition continuously
captured images into groups of 5, each acquired under
a different lighting pattern. Next, we crop patches from
each image in the group, centered at a same pixel location.
A network (Feature Transform Network) then transforms
these data into a per-pixel high-dimensional feature at that
location, the collection of which forms a feature map for the
center view. We feed the feature maps from every group
into a multi-view stereo pipeline for 3D reconstruction.
With the computed shape, the appearance of the object is
differentiably optimized with respect to all input images,
and then stored as texture maps of GGX BRDF parameters.
FTN. = Feature Transform Network.

Tablet. Our tablet is a 12.9-inch iPad Pro (4th gen.). We
use its screen as a programmable light source, and employ
its front-facing 7MP camera to take photographs. Note that
the power of the iPad screen is considerably lower than our
scanner, which translates to a higher requirement on hand-
held stability to avoid blurred images.

4 PRELIMINARIES

The following equation describes the relationship among
the image measurement B from a surface point p, the
reflectance f and the intensity I of each LED of the scan-
ner/each pixel of the tablet, for a single channel.

B(I;p) =
∑

l

I(l)

∫

1

||xl − xp||2
Ψ(xl,−ωi)V (xl,xp)

f(ωi;ωo,p)(ωi · np)
+(−ωi · nl)

+dxl. (1)

Here l is the index of a locally planar light source, and I(l) is
its intensity in the range of [0, 1], the collection of which with
each possible l is a lighting pattern. Moreover, xp/np is the
position/normal of p, while xl/nl is the position/normal of
a point on the light with an index of l. We denote ωi/ωo as
the lighting/view direction. Ψ(xl, ·) represents the angular
distribution of the light intensity. V is a binary visibility
function between xl and xp. The operator (·)+ computes
the dot product between two vectors, and clamps a negative
result to zero. Finally, f is a 2D slice of anisotropic GGX
BRDF [45].

As B is linear with respect to I (Eq. 1), it can be expressed
as the dot product between I and a lumitexel c:

B(I;p) =
∑

l

I(l)c(l;p),

c(l;p) = B({I(l) = 1, ∀j ̸=lI(j) = 0};p), (2)

where c is a function of the light index l, defined on the
surface point p of the sampled object [46].
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Fig. 4: Our network (a) and warping illustration (b). The network (a) takes as input the lumitexels corresponding to all
pixels in 5 patches from a group, and encodes them as measurements by simulating lighting pattern projections. The
measurements of each view are warped to their respective measurement volume (b), defined at the same center view. A
total of 5 volumes are aggregated and transformed to a feature vector, by combining the outputs from an unnormalized
and a normalized network branch which share the same architecture. A 2D warping example of a patch at the i-th view is
shown in (b). First, a measurement volume is set up with respect to the center view. We then fill each voxel by projecting
its center to the patch, and fetching the corresponding image measurement. The acquisition condition, including view and
lighting information, is also stored. Meas. = measurement, Acq. = Acquisition, Cond. = condition.

5 OVERVIEW

To scan an object, we move an illumination-multiplexing
device around it to take photographs continuously. The
light source on the device is programmed to loop over
#p pre-optimized lighting patterns. The camera exposure is
synchronized with the pattern projection. We define every
#p consecutively captured images (i.e., views) as a group,
with the first image acquired with the first lighting pattern,
etc.

To reconstruct the geometry (Sec. 6), for each group, we
aggregate and transform the multi-view photometric infor-
mation from all #p images into a high-dimensional feature
map, defined at the center view (i.e., the view of the +#p/2,-
th image). The feature maps of all groups are directly sent
as input to a multi-view stereo pipeline (e.g., NeuS [4]) for
3D reconstruction. To recover the reflectance (Sec. 7), we
optimize the GGX BRDF parameters with respect to input
photographs, given the previously reconstructed mesh. The
results are stored as texture maps, which can be rendered
with any standard pipeline under novel view and illumina-
tion conditions. Please see Fig. 3 for an illustration.

Note that each group is actually a small set of frames
similar in view, but different in lighting. This structure
generalizes from standard photometric stereo, whose input
images are taken with varying illumination at the same view.
In comparison, the images in one of our groups have slightly
different views, as it is impossible to maintain a fixed view
with a handheld device during acquisition (i.e., one key
challenge we address in this paper).

6 FEATURE TRANSFORM NETWORK

It models physical acquisition and computational recon-
struction together, to enable the automatic, joint optimiza-
tion of both processes (Fig. 4). For training, the network in-

put are #p patches of lumitexels, representing the spatially-
and-angularly varying appearance at #p views in a group.
These patches of lumitexels are encoded by correspond-
ing lighting patterns to simulate the measurement pro-
cess (Sec. 6.1). Next, to handle unstructured views and un-
known depths, each patch of measurements are warped to
a measurement volume defined at the center view (Sec. 6.2).
Finally, all warped measurements are aggregated (Sec. 6.3),
and transformed to a high-dimensional feature vector, cor-
responding to the center pixel of the patch at the center
view (Sec. 6.4). At runtime, for each group, we slide a
window over the image domain, crop from all captured
images in the group, send the resulting #p patches of
measurements to our network, and assemble the final per-
pixel feature vectors as a feature map. Fig. 5 visualizes our
network architecture. We use #p=5 in all experiments.

6.1 Encoding

The first part of our network is an encoder that maps the
measurement process. It consists of a linear fully-connected
(fc) layer, whose weights correspond to the lighting patterns
in acquisition. The output are 5 patches of 19×19 pixels,
corresponding to the 5 views in a group. Essentially, each
output pixel represents an image measurement under a
lighting pattern from a particular view, modeled as the dot
product between an input lumitexel and a pattern (Eq. 2).

Note that increasing the patch size would increase the
computation cost, while decreasing it would reduce the
chance of capturing essential information for transforming
to a high-quality feature. The current patch size is deter-
mined via experiments.

6.2 Warping

To represent the potential geometric relationships between
measurements, the second part of our network warps each
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Fig. 5: Network architecture. Our network takes as input the lumitexels corresponding to all pixels in 5 patches from a
group, and encodes them as measurements by simulating lighting pattern projections. The measurements of each view
are warped to a measurement volume. The total of 5 volumes are aggregated and transformed to a feature vector, by
combining the outputs from an unnormalized and a normalized branch that shares the same structure. The dimension
of data is specified in the corresponding block. In the feature transform module, the dimension of depth is additionally
specified on the top of each block. In the aggregation module, we loop over each of 5 iso-depth slices within 5 measurement
volumes and transform them into a 20D intermediate feature. In the end, all intermediate features at 128 different depth
hypotheses are aggregated to a final 12D feature.

patch to a measurement volume (Fig. 4-b). As a result, 5
patches in a group are warpped to 5 different measurement
volumes. This step is critical for efficient handling of free-
form scanned data with unknown depths.

First, we define a measurement volume as a view frus-
tum at the same center view with a resolution of 5× 5× 128.
Specifically, we cast rays from the camera center towards
each pixel in the center 5 × 5 window of the patch at the
center view. Each ray is discretized into 128 depth hypothe-
ses, uniformly sampled in the range of [zmin, zmax]. The
depth range zmin/zmax is calculated from a coarse bounding
box (or can be manually specified). Ideally, a volume of
1 × 1 × 128 is sufficient to model depth uncertainty for the
center pixel of a patch. However, due to inevitable registra-
tion errors in practice, we enlarge the lateral neighborhood
to 5×5 to tolerate such inaccuracies.

Next, we convert each patch into its own measurement
volume (Fig. 4-b). Specifically, we loop over all voxels in
the volume, project each voxel center to the patch, and store
the corresponding measurement (black if the projection falls
outside the patch) along with the acquisition condition to
the current voxel. Our acquisition condition includes (1) one
hot-encoding of the lighting pattern index, (2) the center
pixel location of the current patch in the image, (3) the
depth of the current voxel, (4) the camera transform relative
to the center view, and (5) the camera pose of the center
view. The above information is stored for each voxel, as we
want our network to be aware of the factors that are related
to final geometric features. Note that the idea of encoding
acquisition conditions for neural processing is proposed
in [9] for free-form appearance scanning.

In the end, a voxel in the i-th measurement volume

contains the image measurements from the i-th view, whose
corresponding 3D positions might fall within the voxel.

6.3 Aggregation

The third part of the network aggregates the information
from all 5 measurement volumes, each of which is com-
puted from a patch. First, for each iso-depth slice in one
volume, we flatten and transform it to a lower dimensional
latent vector using an encoder. As a result, each volume
is converted to 128 latent vectors. This step can be viewed
as an aggregation along the lateral dimensions. Next, for
each depth, we aggregate across 5 views by performing max
pooling on all related latent vectors, and store the result
as an intermediate feature. Note that this step aggregates
illumination as well, since each view is associated with a
different lighting pattern. The output of this part is 128
intermediate features. Now the only dimension that has not
been aggregated is the depth, which is left for the next step.

6.4 Feature Transform

This fourth part produces the final per-pixel geometric fea-
ture, the collection of which will be fed to multi-view stereo
for 3D reconstruction. We send all 128 intermediate features
to a convolutional neural network to extract a 12D feature
as output. This allows the network to automatically learn
how to ”softly” select the most matching depth (among all
5 views) as well as its corresponding feature.

The above architecture (Sec. 6.3-6.4) is repeated to build
two branches, as illustrated in Fig. 4-a & 5. One unnormal-
ized branch works exactly as described above, while the
other branch will normalize the volume across multiple
views on a per-voxel basis. The idea is to prevent the
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Fig. 6: Our training dataset of 15 high-quality objects, digitized by a commercial 3D scanner and a professional light stage
[48].

network from learning stable diffuse albedos only. After
normalization, the absolute values of albedos no longer
matter, therefore forcing the network to exploit other useful
sources of information. Finally, the two 12D output vectors
from both branches are combined into a final 12D feature
via a linear fc layer, similar to [24].

6.5 Loss Function

The function is defined as follows:

L = λ0L0 + λ1L1 + λ2L2 + λpLp, (3)

where L0, L1, L2 are the similarity loss [47] on the final
feature, and the feature from the unnormalized/normalized
branch, respectively. The similarity loss is defined as:

Lsim =
1

2
(
∑

i

logscii +
∑

i

logsrii),

scij =
exp(−dij)

∑

m exp(−dmj)
, srij =

exp(−dij)
∑

n exp(−din)
.

Here dij is the Euclidean distance matrix of features in
a batch of training samples. In each batch, we consider
the features of the same 3D point at different views, as
well as the features corresponding to different points. The
e1 loss essentially decreases the distances of the former
(view invariance), while increases the distances of the latter
(spatial distinctiveness). Finally, Lp is a loss term on the
brightness of lighting patterns, as brighter patterns are
desired for high SNR acquisition during scanning, defined
as: Lp =

√

#l/
∑

l I(l), where #l is the number of inde-
pendently controlled light sources. We use λ0 = 0.33, λ1 =
0.33, λ2 = 0.33 and λp = 0.05 in our experiments.

6.6 Training

We implement our network with PyTorch, using the Adam
optimizer with batch size of 32 and a momentum of 0.9.
Xavier initialization is applied to all weights in the network.
We train 100K iterations with a learning rate of 10−4, which
takes 8 hours to finish.

The training data are synthetically generated using 15
pre-captured objects (Fig. 6) and captured scanning mo-
tions. Each object consists of a 3D mesh along with texture
maps of GGX BRDF parameters. 25 scanning processes are
recorded, each of which consists of 2,000 consecutive camera
poses. We compute the relative motion of every 5 views
with respect to the center view, which will be processed to
synthesize the camera motion for training a single group.
Note that our approach is not tied to the current data since it
is entirely data-driven.

Specifically, the synthetic data for a group are generated
as follows. We first synthesize the center view. To do so, we
randomly sample a 3D point on a random object (Fig. 6)
and a visible view direction based on its geometry normal.
For the viewing direction, a camera position is randomly
generated along the direction within a predefined range of
valid distance (16-65cm in our experiments). Next, a random
foreground pixel is selected as the projected position of
the 3D point. With the projected pixel and the position of
the 3D point, a camera pose is initialized, and then we
randomly rotate it around the view direction. To produce
other views in the group, we random select part of pre-
captured continuous scanning motions, and use the relative
tranforms between frames to synthesize all other 4 views.
Finally, we compute the lumitexels for all pixels in the
patch of each view, whose center is the projected pixel, by
ray-tracing to the object surface and simulating the light
reflections with the associated BRDF parameters, according
to (2). The patches of lumitexels will be used to synthesize
images measurements (Sec. 6.1). Please also refer to [24] for
descriptions on a similar process.

7 APPEARANCE OPTIMIZATION

After geometric reconstruction, we establish a uv-parame-
terization over object surfaces, and compute BRDF parame-
ters at each valid texel via differentiable optimization. For a
specific texel, we first project the corresponding 3D position
to all visible views to gather its image measurements under
learned lighting patterns. We reparameterize the GGX BRDF
model plus the local frame with a 16D latent code and
jointly train a fully-connected network that transforms the
latent code to GGX BRDF parameters and the local frame
as in [49], by minimizing the difference between rendering
results (Eq. 1) and the gathered measurements. Finally, we
convert the latent code at each texel to anisotropic GGX
BRDF parameters and store them in texture maps as the ap-
pearance result. Please refer to the supplementary material
for more details on appearance modeling.

8 IMPLEMENTATION DETAILS

We remove over-blurry images from our sequence to avoid
the negative impact over the final results. We calculate the
level of blurriness for each image [50], and discard an entire
group if the blurriness of any image in the group reaches a
threshold. For each remaining image, we perform structure-
from-motion with COLMAP [51] to compute camera poses
from the ARTags [52] placed along with the object (Fig. 1-
a & b). We apply SAM [53] to segment the object from
the background for each center-view image. After geometry
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Photograph Ground-truth Ours+ [4] Ours+ [6] Ref-NeuS [54] NeRO [43] Neuralangelo [6] NeuS [4] EPFT [24] 1 pattern [33] 5 patterns [33]COLMAP [26]
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W

L
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Fig. 7: Comparison with different geometric reconstruction techniques. From the left to right, a photograph, ground-truth
geometry, our results with NeuS [4]/Neuralangelo [6] as the backend, Ref-NeuS [54], NeRO [43], Neuralangelo [6], NeuS
[4], EPFT [24], CasMvsNet [33] with 5/1 lighting pattern(s), and COLMAP [26]. Vanilla Neuralangelo, NeuS and COLMAP
take input photographs captured under an indoor office environment lighting. EPFT is re-trained with a single learnable
lighting pattern to adapt to free-form scanning. CasMVSNet is supplied with input photographs under 1(corresponding to
our center view) or 5 of our learned patterns. BOWL, DOG, BEAR, BIRD are real objects, and DICE is synthetic. Note that
Neuralangelo fails to produce a mesh for DOG. Quantitative errors in Chamfer distance are reported in the bottom right
corner of related images.

reconstruction, a uv-parameterization with a texture resolu-
tion of 1024×1024 is generated for appearance optimization
(Sec. 7).

In terms of lighting patterns for the tablet, we use a res-
olution of 27×36, which is much lower than the native one,
to save the otherwise prohibitively expensive computational
costs. We modify the original NeuS [4] by changing the
output dimension of the last fully-connected layer to 12, the
same dimension as our feature vector. Similar modification
is applied to Neuralangelo [6], which changes its output
dimension to 12. Please refer to the supplementary material
for more details.

9 RESULTS & DISCUSSIONS

We use our prototype to scan 4 real objects with complex
appearance (BOWL, DOG, BEAR and BIRD). The maximum
dimension of each object ranges from 6 to 18 cm. The recon-
structed geometry and appearance are shown in Fig. 7 & 8.
The iPad is used to scan BOWL (Fig. 9). It takes about 60
seconds to scan a real object. The remaining objects (DICE,
CUP, NAJADE, and MATBALL) are synthetic, whose images
are computed via physically based rendering with a virtual
scanner. The SVBRDF of MATBALL is SATIN0112 from [55].

All computation is performed on a server with dual
AMD EPYC 7763 CPUs, 768GB DDR4 memory and 8
NVIDIA GeForce RTX 4090 GPUs. All results are rendered

with NVIDIA OptiX. It takes 70 minutes to preprocess the
data of an object, including blurriness computation, object
segmentation and camera pose estimation. For a group
of 5 images, our network needs 2.5 seconds to transform
them to a feature map. On average we use 60 groups
to reconstruct an object. The geometry reconstruction via
NeuS/Neuralangelo takes 6/14 hours respectively, and the
appearance optimization about 1 hour. Samples of the cap-
tured images under our optimized lighting patterns and
corresponding feature maps are visualized in Fig. 2.

9.1 Comparisons

In the following comparisons, our approach uses on average
60 groups of images (#images = 300) for reconstructing each
object, while competing methods use around 300 images for
fairness. In appearance comparisons, we randomly choose
70% of the captured images for training and use the remain-
ing 30% as test images to evaluate novel view and lighting
synthesis. The ground-truth geometry of a physical object
is obtained with a commercial 3D scanner [56]. Due to the
challenging appearance (e.g., strong anisotropic/specular
reflections), we have to apply fine powder to object surfaces
for the scanner to work properly.

Geometry Reconstruction. In Fig. 7, we compare our
geometry reconstruction results with state-of-the-art meth-
ods on 5 objects with challenging appearance, including
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Photo G.T. Normal Ours IRON [39] NVDIFFREC [34]
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SSIM 0.93 0.88 0.76
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SSIM 0.96 0.91 0.74
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SSIM 0.97 0.89 0.80
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SSIM 0.98 0.94 0.89

D
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SSIM 0.98 0.85

Fig. 8: Comparison with techniques on joint optimization of shape and appearance. For each pair of images, the left is
a photograph/appearance rendered with novel view and lighting, and the right a normal map from the corresponding
geometry. From the left to right: ground-truth, our reconstructions, the results from IRON [39], and NVDIFFREC [34]. Note
that NVDIFFREC fails to reconstruct DICE due to strong anisotropic appearance. The input images are captured with a
point light for IRON, and with an indoor office environment lighting for NVDIFFREC. Quantitative errors in SSIM are
reported in the bottom right corner of related images.

G.T./Photo Prototype-Scanned Tablet-Scanned

Fig. 9: Comparison of reconstructions of the same object
using our prototype and tablet. The main image shows the
shape, while the inset is the rendered appearance with novel
view and lighting.

Ground-truth Ours [5]

Fig. 10: Comparison between our reconstruction and [5]. For
each pair of images, the left one is the appearance render-
ing, and the right a normal map from the corresponding
geometry.

Fig. 11: Appearance reconstruction rendered with novel
environment lighting. The top row are our relighting results,
and the bottom row results from NeRFactor [7], which fails
to reconstruct the strong anisotropic reflectance of DICE.

specular reflections and textureless regions. The BOWL and
DICE also exhibit strong anisotropic appearance. For a fair
comparison, the acquisition lighting condition for Ref-NeuS,
NeRO, Neuralangelo, NeuS and COLMAP is a conventional
indoor office environment. This is because our pilot study
shows that for these methods, using input photographs
under our lighting patterns leads to lower reconstruction
quality. For CasMVSNet, we test with input photographs
under 1(center-view) or 5 of our learned patterns. Due to the
lack of efficient handling of complex appearance variations,
Fig. 7 shows unsatisfactory reconstructions from Ref-Neus,
NeRO, Neuralangelo, NeuS, CasMVSNet or COLMAP.
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(a) G.T. (b) Ours (c) Gaussian (d) Full-on (e) w/o Warp (f) 2px (g) 4px

0.9 1.4 1.3 2.3 0.9 1.4

Fig. 12: Impact of lighting patterns, warping and camera pose errors over geometric reconstruction. From the left to right:
the ground-truth, the reconstruction using our network, ours with 5 Gaussian noise lighting patterns, ours with a full-on
pattern, ours without the warping step and ours with perturbed camera poses (average reprojection error = 2px/4px).
Quantitative errors in Chamfer distance are reported in the bottom right corner.

TABLE 1: Correlation between transformed features and
various parameters, averaged over our synthetic training
dataset. From the 2nd column to the 4th, our features from
unnormalized/normalized branch, and the final combined
features (c.f. Sec. 6.4). Higher values indicate stronger corre-
lations.

Correlation
Unnormalized

Branch
Normalized

Branch
Combined

Result
Diffuse 0.89 0.42 0.89
Specular 0.68 0.38 0.68
Roughness 0.49 0.41 0.52
Normal 0.55 0.95 0.94
Tangent 0.39 0.62 0.62
Depth 0.46 0.54 0.56
Position 0.58 0.83 0.84

Moreover, the effectiveness of EPFT [24] is limited, as it
relies on photometric information captured from a fixed
view. Our results (the last two columns of Fig. 7) outperform
other methods both qualitatively and quantitatively.

Joint Reconstruction of Geometry & Appearance.
In Fig. 8, we compare both geometry and appearance re-
constructions with related methods. For a fair comparison,
IRON [39] takes as input photographs with a co-located
flash, and the acquisition lighting for NVDIFFREC [34] is
the same indoor office environment as used in Fig. 7, similar
to the original papers. We also find input photographing
under our patterns results in lower-quality reconstructions
with their methods. Our approach outperforms competing
methods qualitatively and quantitively, as we can handle
challenging appearance by efficiently probing the angular
domain with learned illumination multiplexing.

In Fig. 10, we compare with a state-of-the-art differen-
tiable optimization technique [5]. Their method struggles to
accurately reconstruct the geometry in the presence highly
specular reflectance. The end-to-end, joint optimization for
shape and appearance is challenging to converge to correct
results. Plus, their point light does not have sufficient sam-
pling capability, leading to an under-constrained optimiza-
tion. We also compare with NeRFactor [7] on appearance re-
construction in Fig. 11, by rendering the results under novel
view and light. Their approach relies on precise estimation
of the density field, which becomes inaccurate in the pres-
ence of complex appearance. This leads to unsatisfactory
reconstructions, and consequently low-quality renderings.

9.2 Evaluations

We first analyze the correlations between our learned fea-
tures with various common parameters in Tab. 1, by com-
puting Canonical Correlation Analysis (CCA) between our
features and individual parameters, averaged over our syn-
thetic training dataset.

In Fig. 12, we evaluate the impact of lighting patterns,
warping and camera pose errors on reconstructing the
geometry of DICE. We first compute the shape with our
approach on images rendered with camera motions dif-
ferent from training, as shown in (b). Next, we evaluate
the impact of different lighting patterns. (c)/(d) shows the
result computed using our network trained with 5 fixed
Gaussian noise patterns/a full-on pattern. The effectiveness
of our learned patterns is clear, by comparing (b),(c) &
(d). Moreover, we train a network without warping, which
results in considerably higher reconstruction error, as shown
in (e). This demonstrates the effectiveness of our warping,
which efficiently models the 3D uncertainty. The last 2
images evaluate the robustness of our approach against
errors in camera poses. We perturb the camera poses with
Gaussian noise of different standard deviations as in [9],
and report the average reprojection errors on top of the 2
images. Our approach can tolerate a reprojection error of 2
pixels, as shown in (f). However, when the error increases to
4, the 3D reconstruction quality degrades (g). For reference,
the average reprojection error with standard SfM [51] is 0.6
pixel.

In Fig. 13, we evaluate the impact of the number of light-
ing patterns, two-branch architecture and scanning speed
on reconstructing the geometry of NAJADE. Its appearance
is textureless and highly specular (as shown in the first
inset of the figure). We first compute the shape with our
network trained on 3, 5, and 7 lighting patterns, as shown
in Fig. 13 (b), (c) & (d). While using 5 patterns can im-
prove geometric details over 3 patterns, adopting 7 pat-
terns brings marginal benefits. Next, we assess the impact
of normalized/unnormalized branches in Fig. 13 (e)/(f).
For the textureluess NAJADE, normalized features clearly
outputperform unnormalized ones. Finally, we evaluate the
impact of scanning speed in Fig. 13 (g) & (h). Higher speed
results in lower reconstruction quality, as the content in
a group of patches becomes less correlated. This makes it
more difficult to extract useful information from the input.

We further demonstrate the modular property of our
features, by applying them to boost 3D reconstruction with
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(a) G.T. (b) #p = 3 (c) #p = 5 (d) #p = 7 (e) Normalized (f) Unnorm. (g) 3× Speed (h) 6× Speed

0.35 0.22 0.21 0.22 9.43 0.39 1.24

Fig. 13: Impact of the number of lighting patterns, two-branch architecture and scanning speed over geometric reconstruc-
tion. From the left to right: the ground-truth, reconstructions using our network trained with 3, 5, and 7 lighting patterns;
reconstruction using features from normalized/unnormalized branch of our network; and reconstructions from 3/6× the
average scanning speed of the training dataset. The bottom insets visualize the reconstructed normals. Quantitative errors
in Chamfer distance are reported in the top left corner. Unnorm. = Unnormalized.

Ground-truth COLMAP COLMAP+Our Features

A/C 60.9/43.6 69.7/64.9

Fig. 14: Boosting another MVS method (COLMAP) with our
features. From the left to right: the ground-truth, geometric
reconstruction by COLMAP from environment-lit images,
and the result by sending our feature maps to COLMAP.
Quantitative errors in accuracy/completeness percentage
are indicated in the bottom right corner.

a different backend, COLMAP. We test on a synthetic object
with a homogeneous shiny material. In Fig. 14, we employ
COLMAP to reconstruct a 3D shape from images of the ob-
ject rendered under environment lighting, as well as feature
maps computed with our network from the same number
of images under learned lighting patterns. Considerable
quality improvement is shown with the help of our learned
features. Finally, we test the repeatability of our approach.
Two students, who are not involved in this project, are
asked to independently capture about the same number
of photographs of the same object with our prototype. The
reconstructed shapes, shown in Fig. 15, are visually similar.

Ground-truth Scan#1 Scan#2

2.9 3.5

Fig. 15: Repeatability experiment on our geometric recon-
struction from 2 scans by 2 different students. Quantitative
errors in Chamfer distance are reported in the bottom right
corner.

10 LIMITATIONS & FUTURE WORK

Our work is subject to a number of limitations. First, our
current imaging pipeline does not account for global illu-
mination effects like inter-reflections. Also our system can-
not capture transparent/translucent objects, which require
special processing. In addition, we need a dark room for
high signal-to-noise ratio acquisition, as the uncontrolled
environment illumination is not modeled.

It will be interesting future work to address the above
limitations. We are also interested in combing our system
with a differentiable appearance scanner [9], to optimize
lighting patterns for the acquisition of both shape and
reflectance. It is also promising to combine our acquisition
framework with an efficient and expressive neural represen-
tation [57]. Finally, we expect that the reconstruction quality
could be further improved, if future tablets could offer APIs
that enable hardware camera-screen synchronization.
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11 SUPPLEMENTARY MATERIAL

11.1 Details on Geometric Reconstruction

Once our approach convert the groups of input images
into feature maps, they are directly fed as input to existing
multi-view stereo techniques (be it COLMAP, NeuS or Neu-
ralangelo), with only minor modifications: the number of
channels of an input image is changed from 3 (RGB) to 12, to
match the dimension of our features. The objective function
stays the same as in respective reconstruction approaches.
Moreover, for methods based on inverse rendering such as
NeuS or Neuralangelo, we further modify their rendering
process to produce 12-channel output images, in order to
compute the loss against our input feature maps. This is
done by changing the output dimension of the final fully
connected layer in NeuS/Neuralangelo from 3 to 12.

11.2 Details on Appearance Reconstruction

After geometric reconstruction, we establish a uv-parame-
terization over object surfaces, and compute BRDF param-
eters at each valid texel via differentiable optimization.
While not being tied to any specific model, we adopt the
anisotropic GGX BRDF in this paper:

f(ωi;ωo,p) =
ρd
π
+

ρs
DGGX(ωh;αx, αy)F (ωi, ωh)GGGX(ωi, ωo;αx, αy)

4(ωi · np)(ωo · np)
.

Here ρd/ρs are the diffuse/specular albedo, αx/αy are the
roughness parameters, and ωh is the half vector. DGGX is
the microfacet distribution function, F is the Fresnel term
and GGGX accounts for shadowing/masking effects. The
BRDF model is defined in the local frame np/tp of p, where
np/tp are the normal and tangent, respectively.

To fit BRDF parameters for a particular texel, we first
project its corresponding 3D position to all visible views
to gather its image measurements. Next, we employ a 16D
latent vector to represent the BRDF parameters: a decoder
network is also trained to transform the latent vector to the
parameters (ρd, ρs, αx, αy,np, tp). These parameters will be
used to produce rendering results, whose difference with
the aforementioned image measurements is minimized. All
latent vectors and the corresponding decoder are jointly
optimized. Finally, we convert the latent vector at each
texel to anisotropic GGX BRDF parameters, and store them
in texture maps as the appearance result (as visualized
in Fig. 16).

11.3 Features Incorporating Correlated Factors

According to Tab. 1, diffuse albedos and normals are mostly
correlated with our learned features. Here we test the impact
of replacing part of our learned features with the predictions
of these highly correlated factors. Specifically, we encourage
our network to learn to explicitly predict the first 6D of
the output feature as diffuse albedo and normal, with the
following modified loss:

L = λ0L0 + λ1L1 + λ2L2 + λpLp + λregLreg,

where
Lreg = Ldiffuse + Lnormal.
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Fig. 16: Reconstructed SVBRDF parameters. For visualiza-
tion purpose, each tangent is added with (1, 1, 1) and then
divided by 2 to fit to the range of [0, 1]; the specular albedo
is re-scaled; and αx/αy are visualized in the red/green
channel.

We reserve the first 6 dimensions of the final feature for
diffuse and normal predictions, and leave the remaining
dimensions for data-learned features. Here Ldiffuse repre-
sents the mean squared error (MSE) between the first three
dimensions of the final feature and the ground-truth diffuse
albedo, while Lnormal is the MSE between the next three
dimensions of the final feature and the ground-truth normal.
We set λreg = 5 in our experiment.

We test the new features on reconstructing the geometry
of MATBALL. Its Chamfer distance increases from 5.13 (our
features) to 5.28 (new features). We find that while it is faster
to train the new features due to the extra regularization
term, the reconstruction quality is reduced, as the features
are not completely learned from data.


